Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)
IF(true, x, y) → DIV(minus(x, y), y)
IF(true, x, y) → MINUS(x, y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
DIV(x, y) → GE(y, s(0))
GE(s(x), s(y)) → GE(x, y)
IFY(true, x, y) → GE(x, y)

The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)
IF(true, x, y) → DIV(minus(x, y), y)
IF(true, x, y) → MINUS(x, y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)
DIV(x, y) → GE(y, s(0))
GE(s(x), s(y)) → GE(x, y)
IFY(true, x, y) → GE(x, y)

The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

R is empty.
The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus(x, y), y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)

The TRS R consists of the following rules:

ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus(x, y), y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

div(x0, x1)
ify(false, x0, x1)
ify(true, x0, x1)
if(false, x0, x1)
if(true, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → DIV(minus(x, y), y)
DIV(x, y) → IFY(ge(y, s(0)), x, y)
IFY(true, x, y) → IF(ge(x, y), x, y)

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule DIV(x, y) → IFY(ge(y, s(0)), x, y) at position [0] we obtained the following new rules:

DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0))
DIV(y0, 0) → IFY(false, y0, 0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0))
DIV(y0, 0) → IFY(false, y0, 0)
IF(true, x, y) → DIV(minus(x, y), y)
IFY(true, x, y) → IF(ge(x, y), x, y)

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0))
IF(true, x, y) → DIV(minus(x, y), y)
IFY(true, x, y) → IF(ge(x, y), x, y)

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule DIV(y0, s(x0)) → IFY(ge(x0, 0), y0, s(x0)) at position [0] we obtained the following new rules:

DIV(y0, s(x0)) → IFY(true, y0, s(x0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IF(true, x, y) → DIV(minus(x, y), y)
IFY(true, x, y) → IF(ge(x, y), x, y)

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IFY(true, x, y) → IF(ge(x, y), x, y) at position [0] we obtained the following new rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IFY(true, x0, 0) → IF(true, x0, 0)
IFY(true, 0, s(x0)) → IF(false, 0, s(x0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IFY(true, x0, 0) → IF(true, x0, 0)
IF(true, x, y) → DIV(minus(x, y), y)
IFY(true, 0, s(x0)) → IF(false, 0, s(x0))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IF(true, x, y) → DIV(minus(x, y), y)

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule IF(true, x, y) → DIV(minus(x, y), y) we obtained the following new rules:

IF(true, s(z0), s(z1)) → DIV(minus(s(z0), s(z1)), s(z1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IF(true, s(z0), s(z1)) → DIV(minus(s(z0), s(z1)), s(z1))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IF(true, s(z0), s(z1)) → DIV(minus(s(z0), s(z1)), s(z1)) at position [0] we obtained the following new rules:

IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(y0, s(x0)) → IFY(true, y0, s(x0))
IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule DIV(y0, s(x0)) → IFY(true, y0, s(x0)) we obtained the following new rules:

DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
QDP
                                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1))
DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IF(true, s(z0), s(z1)) → DIV(minus(z0, z1), s(z1)) at position [0] we obtained the following new rules:

IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
IF(true, s(x0), s(0)) → DIV(x0, s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
QDP
                                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule DIV(s(y_0), s(x1)) → IFY(true, s(y_0), s(x1)) we obtained the following new rules:

DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
QDP
                                                                ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
IF(true, s(x0), s(0)) → DIV(x0, s(0))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule IFY(true, s(x0), s(x1)) → IF(ge(x0, x1), s(x0), s(x1)) we obtained the following new rules:

IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1)))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1)))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
QDP
                                                                          ↳ UsableRulesProof
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
QDP
                                                                              ↳ QReductionProof
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))

The TRS R consists of the following rules:

ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(x0, 0)
minus(s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
QDP
                                                                                  ↳ Rewriting
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))
IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0))

The TRS R consists of the following rules:

ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IFY(true, s(z0), s(0)) → IF(ge(z0, 0), s(z0), s(0)) at position [0] we obtained the following new rules:

IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
QDP
                                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))

The TRS R consists of the following rules:

ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
QDP
                                                                                          ↳ QReductionProof
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))

R is empty.
The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ QReductionProof
QDP
                                                                                              ↳ ForwardInstantiation
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))
IF(true, s(x0), s(0)) → DIV(x0, s(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule IF(true, s(x0), s(0)) → DIV(x0, s(0)) we obtained the following new rules:

IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ QReductionProof
                                                                                            ↳ QDP
                                                                                              ↳ ForwardInstantiation
QDP
                                                                                                  ↳ ForwardInstantiation
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0))
IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule IFY(true, s(z0), s(0)) → IF(true, s(z0), s(0)) we obtained the following new rules:

IFY(true, s(s(y_0)), s(0)) → IF(true, s(s(y_0)), s(0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ UsableRulesProof
                                                                                        ↳ QDP
                                                                                          ↳ QReductionProof
                                                                                            ↳ QDP
                                                                                              ↳ ForwardInstantiation
                                                                                                ↳ QDP
                                                                                                  ↳ ForwardInstantiation
QDP
                                                                                                      ↳ QDPSizeChangeProof
                                                                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(s(y_0)), s(0)) → IF(true, s(s(y_0)), s(0))
IF(true, s(s(y_0)), s(0)) → DIV(s(y_0), s(0))
DIV(s(x0), s(0)) → IFY(true, s(x0), s(0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
QDP
                                                                          ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule IFY(true, s(z0), s(s(z1))) → IF(ge(z0, s(z1)), s(z0), s(s(z1))) we obtained the following new rules:

IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(s(y_1), s(x1)), s(s(y_1)), s(s(x1)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
QDP
                                                                              ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(s(y_1), s(x1)), s(s(y_1)), s(s(x1)))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(s(y_1), s(x1)), s(s(y_1)), s(s(x1))) at position [0] we obtained the following new rules:

IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ Rewriting
QDP
                                                                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IFY(true, s(s(y_1)), s(s(x1))) → IF(ge(y_1, x1), s(s(y_1)), s(s(x1)))
The remaining pairs can at least be oriented weakly.

IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))
DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(DIV(x1, x2)) = 1 + x1 + x2   
POL(IF(x1, x2, x3)) = x2 + x3   
POL(IFY(x1, x2, x3)) = 1 + x2 + x3   
POL(false) = 0   
POL(ge(x1, x2)) = 0   
POL(minus(x1, x2)) = 1 + x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [17] were oriented:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ DependencyGraphProof
                                                                      ↳ AND
                                                                        ↳ QDP
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ QDPOrderProof
QDP
                                                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(s(z1))) → IFY(true, s(x0), s(s(z1)))
IF(true, s(s(x0)), s(s(x1))) → DIV(minus(x0, x1), s(s(x1)))

The TRS R consists of the following rules:

ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.